Think about it...

If you could buy a proven gas flowmeter that costs less, has longer life, and better performance than ANY meter on the Market, would you?

Turn the page to find out why you should.
Benefits:

Hoffer Premier Gas Series turbine flowmeters provide the following advantages:

- Exceptionally wide flow turndown ranges.
- Multiple rotor assemblies available with varying blade angles in each meter size to optimize meter performance for the flow range.
- Multiple coil outputs for signal redundancy, direction detection and meter diagnostics.
- NIST traceable gas calibrations with uncertainties to ±0.25% available.
- Self-lubricating, ceramic hybrid ball bearings require no external lubrication or maintenance.
- CE, CSA, Cenelec and various other approvals available on most versions of the Premier Gas meter.
- Meter design does not require seals or o-rings, no through holes in housing.
- Significantly lower pressure drop compared to conventional “turbo” flowmeters.
- Over 100,000 installations worldwide.
- Limited number of internal parts reduce friction, increasing accuracy and repeatability, while limiting replacement/wearing parts.
- Can be installed in either a horizontal (preferred) or vertical orientation.

Measurement:

The Hoffer Premier Gas Series measures the volumetric flow of gas through a pipeline. Gas flowing through the meter turns the turbine rotor at an angular velocity which is proportional to the velocity of the gas being measured. As the turbine rotor turns, the rotor blades pass a non-intrusive pickup coil that generates an electrical signal, referred to as a pulse. Each pulse represents a specific volume of gas (i.e. ACF/AM³). The totalization of these pulses result in the total volumetric flow. The total volume can be converted to mass flow total (SCF/NM³) using reference conditions and base density, or by applying various correction techniques using a Hoffer microprocessor based flow computer.

Calibration:

Standard calibrations for Premier Gas meters are performed at a reference density of 0.1 #/Ft³. A 10 point calibration certificate (traceable to NIST or other recognized national laboratory) is supplied with each meter. Calibrations at customer’s actual operating densities can be performed at 3rd party laboratories such as CEESI, NMI, Flow Dynamics or other national laboratories or traceable facilities, upon user request, as an option.
Installation:
Hoffer recommends installing the turbine flowmeter in compliance with guidelines defined in AGA Report No. 7. Flanged flow straightening sections are available in sizes from 2” to 12” with mating fittings in classes from 150# to 2500#. Flow installation kits with threaded end connections are available for smaller line sizes. Various lengths are available depending on the final meter installation location. The upstream portion of the flanged straightening section typically is supplied with an AGA compliant flow straightening assembly with the proper length and number of vanes relative to the line size. DIN flanges are optionally available for both flowmeters and flanged flow straightening sections.

Selection:
A Hoffer turbine flowmeter should be chosen so that it is operated within its most accurate range. The capacity of a turbine flowmeter is based on the actual volumetric flow rate and is expressed as actual cubic feet (ACF) or actual cubic meters (AM³). The lower limit of operation is a function of the gas density and velocity. Hoffer offers computer aided selection and design assistance for sizing the proper flowmeter for each application. Contact our applications group for assistance. Additional sizing information is available in the Hoffer Engineering Guide and on our web site.
All tables are based on standard conditions: 14.73 PSIA and 60°F. Supercompressibility not included. Flow ranges have been rounded.