Model: CAT3
DC or AC Powered Microprocessor Controlled Transmitter

USER’S MANUAL

HP-312
January 2020

Hoffer Flow Controls
Perfecting Measurement™

107 Kitty Hawk Lane • P.O. Box 2145 • Elizabeth City, NC 27909
1-800-628-4584 • (252) 331-1997 • Fax (252) 331-2886
www.hofferflow.com email: info@hofferflow.com
NOTICE

HOFFER FLOW CONTROLS, INC. makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

This manual has been provided as an aid in installing, connecting, calibrating, operating, and servicing this unit. Every precaution for accuracy has been taken in the preparation of this manual; however, HOFFER FLOW CONTROLS, INC. neither assumes responsibility for any omissions or errors that may appear nor assumes liability for any damages that may result from the use of the products in accordance with information contained in the manual.

HOFFER FLOW CONTROLS’ policy is to provide a user manual for each item supplied. Therefore, all applicable user manuals should be examined before attempting to install or otherwise connect a number of related subsystems. During installation, care must be taken to select the correct interconnecting wiring drawing. The choice of an incorrect connection drawing may result in damage to the system and/or one of the components.

Please review the complete model number of each item to be connected and locate the appropriate manual(s) and/or drawing(s). Identify all model numbers exactly before making any connections. A number of options and accessories may be added to the main instrument, which are not shown on the basic user wiring. Consult the appropriate option or accessory user manual before connecting it to the system. In many cases, a system wiring drawing is available and may be requested from HOFFER FLOW CONTROLS.

This document contains proprietary information, which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of HOFFER FLOW CONTROLS, INC.

HOFFER FLOW CONTROLS’ policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering. The information contained in this document is subject to change without notice.

Return Requests / Inquiries

Direct all warranty and repair requests/inquiries to the Hoffer Flow Controls Customer Service Department, telephone number (252) 331-1997 or 1-800-628-4584. BEFORE RETURNING ANY PRODUCT(S) TO HOFFER FLOW CONTROLS, PURCHASER MUST OBTAIN A RETURNED MATERIAL AUTHORIZATION (RMA) NUMBER FROM HOFFER FLOW CONTROLS’ CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned RMA number should then be marked on the outside of the return package and on any correspondence.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting HOFFER FLOW CONTROLS:
1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS OR CALIBRATIONS, consult HOFFER FLOW CONTROLS for current repair/ calibration charges. Have the following information available BEFORE contacting HOFFER FLOW CONTROLS:
1. P.O. number to cover the COST of the repair/calibration,
2. Model and serial number of the product and
3. Repair instructions and/or specific problems relative to the product.
Limited Warranty

HOFFER FLOW CONTROLS, INC. ("HFC") warrants HFC's products ("goods") described in the specifications incorporated in this manual to be free from defects in material and workmanship under normal use and service, but only if such goods have been properly selected for the service intended, properly installed and properly operated and maintained. This warranty shall extend for a period of one (1) year from the date of delivery to the original purchaser (or eighteen (18) months if the delivery to the original purchaser occurred outside the continental United States). This warranty is extended only to the original purchaser ("Purchaser"). Purchaser's sole and exclusive remedy is the repair and/or replacement of nonconforming goods as provided in the following paragraphs.

In the event Purchaser believes the goods are defective, the goods must be returned to HFC, transportation prepaid by Purchaser, within twelve (12) months after delivery of goods (or eighteen (18) months for goods delivered outside the continental United States) for inspection by HFC. If HFC's inspection determines that the workmanship or materials are defective, the goods will be either repaired or replaced, at HFC's sole determination, free of additional charge, and the goods will be returned, transportation paid by HFC, using the lowest cost transportation available.

Prior to returning the goods to HFC, Purchaser must obtain a Returned Material Authorization (RMA) Number from HFC's Customer Service Department within 30 days after discovery of a purported breach of warranty, but no later than the warranty period; otherwise, such claims shall be deemed waived. See the Return Requests/Inquiries Section of this manual.

If HFC's inspection reveals the goods are free of defects in material and workmanship or such inspection reveals the goods were improperly used, improperly installed, and/or improperly selected for service intended, HFC will notify the purchaser in writing and will deliver the goods back to Purchaser upon (i) receipt of Purchaser's written instructions and (ii) the cost of transportation. If Purchaser does not respond within thirty (30) days after notice from HFC, the goods will be disposed of in HFC's discretion.

HFC does not warrant these goods to meet the requirements of any safety code of any state, municipality, or other jurisdiction, and Purchaser assumes all risk and liability whatsoever resulting from the use thereof, whether used singly or in combination with other machines or apparatus.

This warranty shall not apply to any HFC goods or parts thereof, which have been repaired outside HFC’s factory or altered in any way, or have been subject to misuse, negligence, or accident, or have not been operated in accordance with HFC's printed instructions or have been operated under conditions more severe than, or otherwise exceeding, those set forth in the specifications for such goods.

THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. HFC SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGE RESULTING, DIRECTLY OR INDIRECTLY, FROM THE USE OR LOSS OF USE OF THE GOODS. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, THIS EXCLUSION FROM LIABILITY EMBRACES THE PURCHASER'S EXPENSES FOR DOWNTIME OR FOR MAKING UP DOWNTIME, DAMAGES FOR WHICH THE PURCHASER MAY BE LIABLE TO OTHER PERSONS, DAMAGES TO PROPERTY, AND INJURY TO OR DEATH OF ANY PERSONS. HFC NEITHER ASSUMES NOR AUTHORIZES ANY PERSON TO ASSUME FOR IT ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OR USE OF HFC'S GOODS, AND THERE ARE NO ORAL AGREEMENTS OR WARRANTIES COLLATERAL TO OR AFFECTING THE AGREEMENT. PURCHASER'S SOLE AND EXCLUSIVE REMEDY IS THE REPAIR AND/OR REPLACEMENT OF NONCONFORMING GOODS AS PROVIDED IN THE PRECEDING PARAGRAPHS. HFC SHALL NOT BE LIABLE FOR ANY OTHER DAMAGES WHATSOEVER INCLUDING INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

HFC 9708
CONTENTS

1. Introduction--- 1
 1.1 Model Number Designation ---------------------------- 3

2. Specifications --- 7

3. Installation and Operation------------------------------- 9
 3.1 Power Supply -- 9
 3.2 Flowmeter Input ------------------------------------- 10
 3.3 Pulse Output -- 12
 3.4 Analog Output --------------------------------------- 14
 3.5 Alarm Outputs --------------------------------------- 16
 3.6 Communications Port -------------------------------- 18
 3.7 Wiring --- 19

APPENDIX A - Default Configuration -------------------------- 20

APPENDIX B - Declaration ----------------------------------- 22

APPENDIX C - Installation and Conditions for Safe Use Drawings
 for Certified Systems --------------------------- 24
1. Introduction

The CAT3 is a versatile DC or AC powered microprocessor-based transmitter, which provides pulse output, analog output and High/Low flow alarm options. Up to 3 circuit boards may be installed to provide a variety of input/output options.

The flowmeter input circuitry will accept a variety of signal types including, low level sinusoidal, MCP/RF, pulse and contact closure. Optional 20-point linearization is available to correct for flowmeter non-linearities, improving overall system accuracy. The CAT3 is compatible with all Hoffer turbine flowmeters as well as the H.O.G. series positive displacement flowmeters.

CAT3 Block Diagram

An RS232 communications port located under the top plate allows CAT3 to be remotely configured using DevConfig 3.0, a PC application program that is included with all units.
2 Introduction

The standard unit is packaged in an extruded aluminum enclosure for wall mounting or may be mounted directly on a flowmeter using an optional NEMA 4X or EX enclosure. An optional bracket is also available for mounting on standard DIN rail.
1.1 Model Number Designation

MODEL CAT3-(A)-(B)-(C)-(D)-(E)-(F)-(G)

PULSE INPUT
LINEARIZED PULSE OUTPUT
LINEARIZED ANALOG OUTPUT
POWER SUPPLY
ALARM OUTPUT
ENCLOSURE STYLE
SPECIAL FEATURES

PULSE INPUT
MODEL CAT3-(A)-()-()-()-()-()-()-()
OPTION (A)
(1) MAG COIL, PULSE, DRY CONTACT
(2) MC3P
(3) ISOLATED PULSE, RPM, RPR AND HALL EFFECT COILS

LINEARIZED PULSE OUTPUT
MODEL CAT3-()-(B)-()-()-()-()-()-()
OPTION (B)
(1) 0-5 TTL / CMOS
(2) OPEN COLLECTOR
(3) OPEN COLLECTOR WITH PULL UP TO V+
(4) AC SQUARE WAVE
(5) 0-10V SQUARE WAVE
NOTE: NOT RECOMMENDED FOR USE AS A FLOW RATE SIGNAL. MAXIMUM INPUT SENSOR FREQUENCY ALLOWED IS 100HZ.

LINEARIZED ANALOG OUTPUT
MODEL CAT3-()-()-(C)-()-()-()-()-()
OPTION (C)
(1) 4-20 MA
(5) 1-5 VDC

POWER SUPPLY
MODEL CAT3-()-()-()-(D)-()-()-()-()
OPTION (D)
(DC) 13-30 VDC
(AC) 100-240 VAC
NOTE: WHEN (AC) IS SELECTED, THE ALARM OPTION IS NOT AVAILABLE. USE REMOTE ACC39B POWER SUPPLY IF REQUIRED.
4 Introduction

ALARM OUTPUT
MODEL CAT3-(_)-(_)-(_)-(_)-(E)-(_)-(_)
OPTION (E)
(4) HIGH OPEN COLLECTOR
(5) HIGH TTL / CMOS
(6) HIGH RELAY ONE SPDT, CONTACT RATED @ 2A 30V
(7) LOW OPEN COLLECTOR
(8) LOW TTL / CMOS
(9) LOW RELAY ONE SPDT, CONTACT RATED @ 2A 30V

NOTE: WHEN ALARM OPTION IS SELECTED, (AC) POWER IS NOT AVAILABLE. USE REMOTE ACC39B POWER SUPPLY.

ENCLOSURE STYLE
MODEL CAT3-(_)-(_)-(_)-(_)-(F)-(_)-(_)
OPTIONS (F)
(1) GENERAL PURPOSE.
2.6"L X 2.6"H X 2.6"W MINIMUM MOUNTING SPACE.
(D) 2" LONG DIN RAIL MOUNT SINGLE UNIT.
UP TO 20 CAT3 UNITS CAN BE MOUNTED ON A SINGLE RAIL. ADD 2" PER UNIT.
(E3) EXPLOSION-PROOF (ALL CONDUIT PORTS ARE ¾" FNPT)
(E3M) EXPLOSION-PROOF (CONDUIT PORTS D2 & D3 = M20 THR’D;
(E4)* EXPLOSION-PROOF - FOR USE WITH AC POWERED CAT ONLY
(NOT Ex d SYSTEM CERTIFIED)
*FOR Ex d CERTIFIED SYSTEM USE E6 OR E6M ENCLOSURE
(E6) EXPLOSION-PROOF STAINLESS STEEL
(ALL CONDUIT PORTS ARE ¾"FNPT)
(E6M) EXPLOSION-PROOF STAINLESS STEEL (M20 NOT AVAILABLE FOR CANADA)

NOTE: FOR UL LISTED EXPLOSION-PROOF APPLICATIONS CONTACT FACTORY.
SPECIAL FEATURES
MODEL CAT3-()-()-()-()-()-()-(G)
OPTIONS (G)
(CE) MARK REQUIRED FOR EUROPE
(SP) ANY SPECIAL FEATURES THAT ARE NOT COVERED IN THE MODEL NUMBER, USE A WRITTEN DESCRIPTION OF THE -SP
(MIL) DESIGNED TO MEET EMC STDs EN5011-1992 AND EN61326-1:1997
(CFX) 6.75" LONG RISER AND UNION FOR EXPLOSION-PROOF SYSTEM CERTIFIED ENCLOSURES MOUNTED ON TURBINE. USED WITH “X” RISER TURBINE OPTION AND (EXP) OR (EX) SPECIAL FEATURES OPTION UNDER FLOWMETERS AS FOLLOWS: (EXP) FOR CANADIAN INSTALLATION OR (EX) FOR NON-CANADIAN INSTALLATION.
NOTE: IF PROCESS TEMP IS < -40°C AND > 79°C, EX-PROOF ENCLOSURE MUST BE MOUNTED REMOTELY.
(C) REMOTED MOUNTED FOR EXPLOSION-PROOF SYSTEM CERTIFIED ENCLOSURE. FOR USE WITH (C-EXP) OR (EX) SPECIAL FEATURES UNDER FLOWMETERS AS FOLLOWS: (EXP) FOR CANADIAN INSTALLATION OR (EX) FOR NON-CANADIAN INSTALLATION.
NOTE: “X” RISER, CERTIFIED UNION, REDUCER AND ENCLOSURE (TO BE SPECIFIED) MOUNTED ON FLOWMETER
(X) NO SPECIAL FEATURES

STYLE E3, E3M, E6 AND E6M SYSTEM CERTIFIED RATINGS
- CSA/FM: CLASS I, DIV. 1, GR. BCD; CLASS II, DIV. 1, GR. EFG; CLASS III, TYPE 4X,
CLASS I ZONE 1 AEx db IIB + H2 T6/T5 Gb,
Ex d IIB+H2 T6/T5; Gb; Ex tb T80°C/T86°C IIIC Db; IP66
CLASS I, ZONE 21 AEx tb T80°C/T86°C IIIC Db; IP 66
- ATEX/IECEx: II 2 G Ex db IIB + H2, T6/T5 Gb
II 2 D Ex tb IIIC T80°C/T86°C Db; IP66
T6: -40°C ≤ Ta ≤ 79°C; T5: -40°C ≤ Ta ≤ 85°C

NOTES: 1. IF ENCLOSURE IS MOUNTED ON TURBINE FLOWMETER, RISER MUST BE SPECIFIED ON METER.
2. PULSE SCALING IS SUPPLIED AS A STANDARD IN THE BASE PRISE AND IS SCALED TO THE UNIT MEASURE.
3. WINDOWS® BASED SETUP AND CABLE KIT CONSISTS OF:
 1 EA. HIT2A-301
 1 EA. CABLE MODEL 26886
 1 EA. WINDOWS® BASED SETUP DISC
 IF THE CAT IS SHIPPED UN-CALIBRATED, THIS MUST BE ORDERED TO CALIBRATE OR RE-CALIBRATE IN THE FIELD.
6 Introduction

This page intentionally left blank.
2. Specifications

General Specifications

Input Signal Type: Magnetic pick up, MCP pick up, Contact Closure, Pulse

Input Frequency Range: 0.2 Hz to 4 KHz

Signal Level: 10 mV rms to 30 Vdc

Power Supply: 13-30 Vdc (Reverse polarity protected) 100-240 Vac (Fuse rating 0.5A, 250 Vac)

Analog Output: 4-20mA, 1-5V

Analog Output Response Time: 1/8 sec.*

Load Resistance: Max 650 Ohms at 24 Vdc

Accuracy: +/- 0.02% of full scale @ 20°C

Temperature Drift: 40ppm/deg C

Pulse Output: 0-5, 0-10V, Open Collector, AC square Internal pull-up resistor 2.7k Ohms Recommended load min. 50k Ohms

Maximum Pulse Frequency: 1, 2, 4, 8, 100, 50% Duty Cycle

Pulse Scaling: Per flow unit of measure, divide by 1, 10, 100

Hi/Lo Alarm: Relay (2A, 30 Vdc), 0-5V, Open Collector (0.5A, 30 Vdc)

Communications: RS232 port for Configuration and diagnostics

Operating Temperature: T5 and STD: -40° ≤ Ta ≤ 85°C T6: -40° ≤ Ta ≤ 79°C

Humidity: 0-90% Non-condensing

Enclosure: Extruded aluminum DIN rail mount Explosion Proof

Regulatory: CE compliant

*Limited by signal frequency and MST settings. Refer to Section 3.4.

Options

20 Point Linearization
This page intentionally left blank.
3. Installation and Operation

3.1 Power Supply

DC Power (13-30 VDC)

![DC Power Diagram](image)

AC Power (100-240 VAC)

AC power for CAT3 requires an optional circuit board, PCA182. The Alarm option (PCA184) is not available when the AC Power option is equipped.

![AC Power Diagram](image)
3.2 Flowmeter Input

The Preamp circuitry for conditioning the flow signal is located on PCA180. The following drawings illustrate typical connections and switch settings on PCA180 for various input signals.

Magnetic Pickup Coil

![Magnetic Pickup Coil Diagram](image)

MCP/RF Coil

![MCP/RF Coil Diagram](image)
Redi-Pulse (TTL Pulse)

Redi-Pulse (Open Collector)

PCA180 SW1

PCA180 SW1
3.3 Pulse Output

CAT3 provides a Pulse Output option that is scaled per flow unit of measure by a factor of 1, 10 or 100. Pulse output frequency varies with flow rate. The maximum frequency can be set at 1, 2, 4, 8, 100 Hz. The following drawings illustrate typical connections and switch settings for various pulse output options.

TTL(0-5V), 0-10V, High Level (DC In), AC Square

TTL(0-5V), 0-10V, AC Square

PCA180 SW2

High Level Pulse, AC Square
Open Collector, Isolated Pulse

PCA180 SW2

Open Collector

PCA180 SW2

Isolated Pulse
3.4 Analog Output

CAT3 provides an Analog Output option that will output an analog current or voltage that is proportional to the flow rate.

Analog Output – DC Power

- 4–20 mA Output
- 1-5 V Output

Analog Output – AC Power
The Microcontroller, located on PCA183, accepts the square-wave output of the preamplifier and performs all of the calculations that are required to control the Loop Driver. After measuring the frequency of the square-wave, the Microcontroller uses the following equations to compute the flow rate and current.

\[
\text{flowrate} = \frac{\text{frequency}}{K\text{factor}} \times 60^{FM} \times CF
\]

Where:

- \(K\text{factor}\) = Is dependent on the Flow Calculation Method setting and is either the Average K-Factor or the Linearized K-Factor from the Frequency / K-Factor table.
- \(FM\) = Is the Flow rate Units setting of 0, 1, or 2. Where “0” is for Seconds, “1” is for Minutes, and “2” is for Hours.
- \(CF\) = Is the Correction Factor setting.

\[
\text{current} = 4mA + \left(16mA \times \frac{\text{flowrate}}{AF}\right)
\]

Where:

- \(AF\) = Is the 20mA maximum Flow rate value.

If the calculated flow rate is greater than the AF setting, the current will be set to 24mA to indicate an “Over-range” condition. After calculating the current, the Microcontroller digitally sends the current information to the Loop Driver. The loop driver, located on PCA183, uses the digital information sent to it by the Microcontroller to set the current of the loop. The Loop Driver also supplies power to the Microcontroller.

The analog output response time to reach steady state due to a change in the flow rate is approximately 1/8 of a second. When flow stops, the time for the analog output to return to 4 mA will be between .25 and 8 seconds, depending on the Maximum Sample Time (MST) setting. MST is adjusted using the NB= (DATA) command, where NB is a value between 1 and 80. The default MST setting is NB= 1. Adjusting the MST is only recommended for low flow applications where the minimum input frequency is below 1 Hz.
3.5 Alarm Outputs

CAT3 provides an optional High/Low Flow Alarm feature. Alarms require an optional circuit board, PCA184. The Alarm option is not available when the AC Power option is equipped. The drawings below illustrate the typical connections and switch settings for various alarm options.

Hi/Lo Alarm Relay

Hi/Lo Alarm TTL(0-5V)
Hi/Lo Alarm Open Collector
3.6 Communications Port

CAT3 is equipped with RS232 serial communication port for changing CAT3 configuration, diagnostics functions, and flow monitoring. Hoffer communication program DevConfig 3.0 must be used to communicate with CAT3.

The RS232 serial port connector is located under the top plate of CAT3 and may be accessed by removing the two screws from the top plate. A matching connector is provided with HOFFER HIT2A-301 Communications Cable. CAT3 unit has to be powered from external supply in order to be able to communicate. Additional power for CAT3 communication circuitry is supplied by the RS232 serial port of the computer/terminal. COM port settings must be set as follows:

- **Baud Rate:** 2400
- **Data Bits:** 8
- **Parity:** None
- **Stop bits:** 1
- **Handshaking:** None

HOFFER HIT2A-301 Communications Cable

![Diagram of DB9 connector pins and Molex connector](image-url)
3.7 Wiring

When installing CAT3, it is a good practice to use shielded cables for all input and output signals. The shield should be connected to the earth ground lug on the CAT3. The shield on the opposite end of the cable should be left open. Connections are made to the CAT3 terminal blocks using wire gauges 16 to 28 AWG and 12 to 26 AWG (AC Power), tightening Torque 0.22 to 0.25Nm.

This wiring practice is mandatory in order to comply with the requirements for Electromagnetic Compatibility, as per EMC-Directive 2014/30/EU of the Council of European Community.
APPENDIX A - Default Configuration
<table>
<thead>
<tr>
<th>FIELD</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOW CALC. METHOD</td>
<td>0 (Average)</td>
</tr>
<tr>
<td>K-FACTOR DECIMAL</td>
<td>3</td>
</tr>
<tr>
<td>AVERAGE K-FACTOR</td>
<td>1.00</td>
</tr>
<tr>
<td>NUMBER OF POINTS IN K-TABLE</td>
<td>10</td>
</tr>
<tr>
<td>FREQUENCY 01</td>
<td>4999.981</td>
</tr>
<tr>
<td>FREQUENCY 02</td>
<td>4999.982</td>
</tr>
<tr>
<td>FREQUENCY 03</td>
<td>4999.983</td>
</tr>
<tr>
<td>FREQUENCY 04</td>
<td>4999.984</td>
</tr>
<tr>
<td>FREQUENCY 05</td>
<td>4999.985</td>
</tr>
<tr>
<td>FREQUENCY 06</td>
<td>4999.986</td>
</tr>
<tr>
<td>FREQUENCY 07</td>
<td>4999.987</td>
</tr>
<tr>
<td>FREQUENCY 08</td>
<td>4999.988</td>
</tr>
<tr>
<td>FREQUENCY 09</td>
<td>4999.989</td>
</tr>
<tr>
<td>FREQUENCY 10</td>
<td>4999.990</td>
</tr>
<tr>
<td>FREQUENCY 11</td>
<td>4999.991</td>
</tr>
<tr>
<td>FREQUENCY 12</td>
<td>4999.992</td>
</tr>
<tr>
<td>FREQUENCY 13</td>
<td>4999.993</td>
</tr>
<tr>
<td>FREQUENCY 14</td>
<td>4999.994</td>
</tr>
<tr>
<td>FREQUENCY 15</td>
<td>4999.995</td>
</tr>
<tr>
<td>FREQUENCY 16</td>
<td>4999.996</td>
</tr>
<tr>
<td>FREQUENCY 17</td>
<td>4999.997</td>
</tr>
<tr>
<td>FREQUENCY 18</td>
<td>4999.998</td>
</tr>
<tr>
<td>FREQUENCY 19</td>
<td>4999.999</td>
</tr>
<tr>
<td>FREQUENCY 20</td>
<td>5000.000</td>
</tr>
<tr>
<td>K-FACTOR 01</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 02</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 03</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 04</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 05</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 06</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 07</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 08</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 09</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 10</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 11</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 12</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 13</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 14</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 15</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 16</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 17</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 18</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 19</td>
<td>1.00</td>
</tr>
<tr>
<td>K-FACTOR 20</td>
<td>1.00</td>
</tr>
<tr>
<td>MEASURING UNITS</td>
<td>GAL</td>
</tr>
<tr>
<td>FLOW RATE TIME UNITS</td>
<td>MIN</td>
</tr>
<tr>
<td>MAX SAMPLE TIME</td>
<td>01</td>
</tr>
<tr>
<td>ANALOG OUTPUT LOW</td>
<td>0.000</td>
</tr>
<tr>
<td>ANALOG OUTPUT HIGH</td>
<td>100.000</td>
</tr>
<tr>
<td>PULSE SCALE</td>
<td>OFF</td>
</tr>
<tr>
<td>PULSE FREQUENCY</td>
<td>100</td>
</tr>
<tr>
<td>ALARM FUNCTION</td>
<td>Off</td>
</tr>
<tr>
<td>ALARM LEVEL</td>
<td>100.000</td>
</tr>
</tbody>
</table>
APPENDIX B - Declaration of Conformity

EU Declaration of Conformity – CAT Series Transmitters

Manufacturer: Hoffer Flow Controls Inc, 107 Kitty Hawk Ln, Elizabeth City, NC 27909

Equipment: Flame Proof Transmitters

NOTE: “X” in Model number may be any combination of numbers and characters representing specific options.

Marking: With Aluminum Explosion Proof Enclosure

Class I, Division 1, Groups BCD; Class II, Division 1, Groups E,F,G; Class III; Type 4X;
Ex d IIB+H2 T6/T5; Gb; Ex tb T80°C/T86°C IIIIC Db; IP66;
Class I, Zone 1, AEx db IIB+H2 T6/T5; Gb; Class I, Zone 21, AEx tb T80°C/T86°C IIIIC Db; IP66:

II 2 G Ex db IIB+H2 T6/T5 Gb
II 2 D Ex tb IIIIC T80°C/T86°C Db IP66
T6 = -40°C to +79°C; T5 = -40°C to +85°C

Seal within 50mm of enclosure.

Marking: With Stainless Steel Enclosure

Class I, Division 1, Groups BCD; Class II, Division 1, Groups E,F,G; Class III; Type 4X;
Ex d IIB+H2 T6/T5; Gb; Ex tb T80°C/T86°C IIIIC Db; IP66;
Class I, Zone 1, AEx db IIB+H2 T6/T5; Gb; Class I, Zone 21, AEx tb T80°C/T86°C IIIIC Db; IP66:

II 2 G Ex db IIB+H2 T5/T6 Gb
II 2 D Ex tb IIIIC T86°C Db IP66
T6 = -40°C to +79°C; T5 = -40°C to +85°C

Seal within 18” of enclosure.
We hereby declare that the product, which is subject of this declaration, is in conformity with the following standards:

|------------|--|--|

EC-Type Examination Certificate and IECEx Certificate issued by:

TUV Rheinland Industrie Service GmbH
Am Grauen Stein
D-51105 Köln
Country : Germany

Notified Body Number: 0035

CSA-Type Examination Certification issued by:

CSA Group Testing & Certification Inc.
Edmonton, AB, Canada T6N 1E6
APPENDIX C - Installation and Conditions for Safe Use Drawings for Certified Systems
Appendix C - Installation and Safe Use Drawings

Installation Instructions:

1. The equipment is suitable for use in the presence of flammable gases, vapors, and dusts. It is not suitable for use in hazardous locations where metallic dusts may be present.

2. The equipment is certified for use within the expected temperature range of -40°C to 80°C.

3. When processing temperatures are exceeded, the equipment's protective enclosure will automatically disengage from the process.

4. Installation shall be performed by trained personnel familiar with the installation code of practice, guidelines, and standards.

5. In the event of an emergency, it is recommended to follow the emergency procedures outlined in the operation manual.

6. Before starting the unit, ensure the cover for the electronic control is securely fastened.

Conditions for Safe Use (continued):

1. Do not remove the equipment's cover unless it is part of the equipment's design.

2. Select an installation location such that the enclosure will not be exposed to impact from objects.

3. Avoid damage to the electronic control box during installation.

4. Ensure all items are installed securely and in accordance with the instructions provided.

5. Do not operate the equipment until it has been properly installed and tested.

6. Make sure the unit is sealed at the enclosure wall for proper ventilation.

NOTE: Flammable fluid rated available at CAT 912 for use in hazardous areas.

HP-312

Huffer Flow Controls, Inc.
Elizabeth City, NC 27930

Installation Drawing:

Installation (DWA, ATEX/IECEX,
Ex. Certified, SRI/AS
CAT-1280)

CAT 812

Installation (DWA, ATEX/IECEX,
Ex. Certified, SRI/AS
CAT-1280)

CAT 812